

fellerLYnk
Description of widgets

10.FLYNKWIDG-E.1806/180607

All rights reserved, including those of translation into different languages. This document, or any parts
thereof, may not be copied, photocopied or distributed, in whole or in part, by any means, nor transmitted
electronically, without the publisher's written consent.
Technical specifications subject to change without notice

© Feller AG 2017

 CONTENT

 3

1 Widget ID .. 5
2 Widget file structure .. 5
3 Available libraries and frameworks ... 5
4 File script.js ... 6
4.1 Widget configuration ... 8
4.2 Auxiliary methods of class Widget (base model) .. 9
4.2.1 Working with fellerLYnk objects (group addresses): .. 9
4.2.2 Other methods and properties .. 10
4.2.3 Call of methods of class Widget. .. 10
4.3 Helper methods of class WidgetView (basic views) ... 10
4.4 Trigger methods .. 11
4.5 Widget templates .. 11
4.5.1 Recommended widget structure ... 12
4.5.2 Usage of methods and properties of model in templates ... 12
4.5.3 Preview template .. 13
4.6 Data exchange among the model and view ... 14

4

10.FLYNKWIDG-E.1806 Description of widgets | 5

1 Widget ID
Each user type widget should have a unique identifier within a single controller (ID). Any string can be as ID.

Widget ID is used when installing the widget, appears in its program code and cannot be easily changed after
installing the widget in app. Widget ID only appears in UI during installation. To minimize the risk of collisions when
using your widgets in various installations, we recommend to use set of characters as ID containing unique part of
widget developer (prefix).

Furthermore, some ID are already reserved in system widgets, the app will inform you when attempting to install
the widget.

2 Widget file structure
Each widget contains the following set of files

• script.js , it is required file in the root folder of widget. It contains JavaScript code that describes the widget
interface and logic of its work. The script is loaded on the page once regardless of number of widgets of this
type that has been created by the user in a particular app.

• style.css, it is optional file in the root folder of widget. It contains CSS styles that are unique for your widget. If
this file appears in the widget folder it will be automatically loaded when refreshing the page.

• Any other graphical, JavaScript, CSS files that will be used in your widget. You need to load them in one of
mentioned above files.

We recommend to use the following folder structure for widget:

• script.js

• style.css

• images
graphical files

• js
additional JaScript file and libraries.

3 Available libraries and frameworks
In your widget you can use the following set of libraries and frameworks which are included in the project:

• JQuery (http://jquery.com)

• plugin JQuery noUiSlider (http://plugins.jquery.com/nouislider/)

• plugin JQuery knob (http://plugins.jquery.com/knob/)

• Boostrap v3 (CSS+Javascript) (http://getbootstrap.com)

• Font Awesome v4 (http://fontawesome.io)

• UnderScore.js (http://underscorejs.org/)

• Backbone.js (http://backbonejs.org/)

http://jquery.com/
http://plugins.jquery.com/nouislider/
http://plugins.jquery.com/knob/
http://getbootstrap.com/
http://fontawesome.io/
http://underscorejs.org/

6 | Description of widgets 10.FLYNKWIDG-E.1806

4 File script.js
Before proceeding with further part of documentation we recommend to read the documentation of Backbone.js
library http://backbonejs.org/ .

In your JavaSctipt code in collection of widget classes you need to add your own extensions for base classes –
Widget (model) and WidgetView (view), by realizing necessary set of fields and methods as listed in the example
below:

Widget["your widget ID"] = Widget.extend({
 /* description of widget settings*/
 config : {
 ...
 },

 /*is called when objects values are changed on Logic Machine*/
 changeValue : function(name, value) {
 ...
 }
}

WidgetView["your widget ID"] = WidgetView.extend({
 /*width of widget in cells*/
 width : ...,
 /*height of widget in cells*/
 height :,

 /* is called when the object is initialized */
 init : function() {

 }

 /*main template of widget*/
 template : ...,

 /*template for viewing in editor mode*/
 preview :,

 /*is called after rendering of widget during initialization*/
 afterRender : function() { ...}

 ...
})

http://backbonejs.org/

10.FLYNKWIDG-E.1806 Description of widgets | 7

Instead of "your widget ID" you need to use your widget ID and specify it also when installing the widget from
interface. Besides described service attributes you can use any of your helper methods and properties during
implementation of these classes, which are responsible for data conversion, validation, calculations, working with
DOM of your widget etc.

Base classes Widget and WidgetView are extensions of base class model (Backbone.Model) and view
(Backbone.View), Backbone respectively includes set of helper methods to work with fellerLYnk objects which can
be used in your implementation.

For each type of widget created by Touch user there are following classes created.

model = new Widget["your widget ID"]();
view = new WidgetView["your widget ID"]({model:model});

Thus, model method calls within model itself should be carried out using this:

this.func()

Call of properties and model methods within view should be done in the following way:

this.model.func()

8 | Description of widgets 10.FLYNKWIDG-E.1806

4.1 Widget configuration

All widget settings required to bind it with fellerLYnk objects as well as other settings and data required for the
formation of the forms and editing in Touch constructor have to be described in the property config of your model.

Example:
Widget["your widget ID"] = Widget.extend({
 config : {
 title : "Name of widget",
 fields : {
 title : {
 datatype : "string",
 title : "Title"
 }
 },
 objects : {
 key : {
 datatype : dt.bit,
 title : "Object"
 }
 ...
 },
 settings : {
 "min-value" : {
 datatype : "number",
 title : "Minimum value"
 }
 ...
 },
 systems:["blinds", "ac"]
 },
 ...
}

The field «title» is used to specify the name of the widget. It will be displayed in a preview mode and editing mode.

The field «fields» is used to specify fields of the widget which should be configured by user in the constructor.
Object keys will be used to access the values of these properties. The access to fields inside the model itself can
be done with the following command this.field. We recommend to use this field only to edit the property title and all
other widget settings to bring in settings section.

The field «settings» is used to specify list of widget settings which are available for user editing in the constructor
mode. Object keys will be used to access settings thanks to helpers described below. For every property you need
to specify title, which will be seen in widget editing mode, and datatype. Currently two data types are supported -
string and number.

The field «objects» is used to show list of objects from fellerLYnk (group addresses) which can be linked to a
particular widget. Specific objects should be specified by user with a help of widget creation form in Touch
constructor. Object keys will be used to access object values and properties thanks to helpers described below.
Title also should be specified for every object which will be shown in the widget editing form as well as KNX
datatype number. A list of all supported datatypes can be found here http://openrb.com/docs/lua.htm#grp-info. To
provide specific numeric constants we recommend to use the object dt with a list of fields defined in the link above.
If a specific KNX subtype is specified as datatype, the user will be offered to choose objects with this type only. If a

http://openrb.com/docs/lua.htm#grp-info

10.FLYNKWIDG-E.1806 Description of widgets | 9

specific type is specified as datatype, the user will be offered to choose objects with this data type or its subtypes.

The field «systems» is used to specify a list of engineering systems which will be used in Touch navigation.
Widgets of a particular type will be shown on a screen of all engineering systems listed in an array. Here is a list of
identifier of engineering systems which can be used:

• lighting

• blinds

• power

• windows

• ac

• ventilation

• floor

4.2 Auxiliary methods of class Widget (base model)

Here is a list of predefined methods Widget which you can use in your models and views.

4.2.1 Working with fellerLYnk objects (group addresses):

getValue(key)

Returns current object value.

existsValue(key)

Returns true if user has specified a specific object in Touch configurator, or false if the object is now specified.

getObject(key)

Returns information on the object – group address, data type and object name. Example of reply:

{
 updatetime:1461825143,
 address : "1/1/1",
 units "",
 value : true,
 name : "alarm",
 datatype: 1005
}

write(key, value)

Write object value to the controller/fieldbus.

10 | Description of widgets 10.FLYNKWIDG-E.1806

4.2.2 Other methods and properties

conf(key)

Returns value of setting (described in the section settings of widget configuration), specified by user

title()

Returns value of the field «title» which is specified by user during setting up the widget in Touch constructor.

сtitle()

Returns widget name which is specified in «title» section of widget configuration.

isPreview

The field has value true if the widget is shown in preview mode. Note! The widget is shown in a preview mode prior
to user settings i.e. it has no group addresses or other settings set up.

4.2.3 Call of methods of class Widget.

To access the above helper functions use the correct context. Example of calling a function title():

• in model methods this.title()

• in view methods this.model.title()

• in templates title()

4.3 Helper methods of class WidgetView (basic views)

List of predefined methods of WidgetView which can be used in your views.

size(width, height)

Allows to resize the widget after initialization (on the fly). Widget size should be specified in the number of
occupied cells. The size of one cell is 110px*110px, but taking into account fields the real size of widget can be
determined by the following formula (110*width-10) px * (110*height-10) px

el

DOM-model of an HTML container in which your widget is enclosed. More detailed usage is described in the
documentation of library Backbone.js http://backbonejs.org/#View-el . We recommend to use it wherever you are
using the selectors to access the DOM-model of your widget, in order to avoid collisions with other widgets.
Example of search on your widget title page:

$(“div.widget-title”, this.el)

WidgetView class methods can only be called from your view. this is used to access them. (For example,
this.size(1,2))

10.FLYNKWIDG-E.1806 Description of widgets | 11

4.4 Trigger methods

Parts of methods described in structure of JS file are events. They are called by program kernel at specific cases.

changeValue(key, value) for the model

If you have implemented this method in your model, it will be called each time when there was an object value
changed in fellerLYnk (group addresses which are related to your widget). The object key (as provided in the
configuration) and its new value will be given as parameters for the method.

init() for the view

If you have implemented this method in your view, it will be called once during initialization of view (prior its
rendering). Here you can initialize start parameters of the view which can be used in the template during its
rendering.

afterRender() for the view

If you have implemented this method in your view, it will be called once – right after rendering the widget. It can be
used to initialize individual controls which cannot be made in the template (e.g. dimmer knob)

4.5 Widget templates

In the view class of widget you need to implement two methods:

template(model)

It will be called by the system during widget initialization (for rendering the widget in common list of widgets). As an
input parameter the initialized model will be sent.

preview(model)

It will be called by the system during widget initialization for its preview rendering in Touch constructor. Note that in
this case the model will not contain objects and widget settings which are set by user during widget creation
process.

For templating we strongly recommend to use method _.template from Underscore.js library
http://underscorejs.org/#template . But you can use also any other templating or create your widget DOM-objects
in JavaScript. In this case do not forget that the whole widget is placed in a container which you can access in your
view by this.el.

All further example in this documentation use Underscore.js library which is already included in the project.

http://underscorejs.org/#template

12 | Description of widgets 10.FLYNKWIDG-E.1806

4.5.1 Recommended widget structure

We recommend to use the following HTML structure to apply all base classes of system widgets

WidgetView["your widget ID"] = WidgetView.extend({
 ...
 template: _.template(" \
 <div class=\"widget\"> \
 <div class=\"widget-title\"> \
 <div class=\"txt\"><%=title() || ctitle()%></div> \
 </div> \
 widget controls
 </div> \
 "),
 ...
})

Also you can add your own classes and define styles for them in your style.css or use another widget structure.
Remember that all created CSS classes for your widget can affect the appearance of other elements of the
application. We recommend to use unique names for new CSS classes to avoid such collisions.

4.5.2 Usage of methods and properties of model in templates

If you use _.template Underscore.js for templating of widget then since as a widget model is passed as an input
parameter in your template, you can call any model methods and its properties directly in template without
specifying the context.

Example:

WidgetView["your widget ID"] = WidgetView.extend({
 ...
 template: _.template(" \
 <div class=\"widget\"> \
 <div class=\"widget-title\"> \
 <div class=\"txt\"><%=title() || ctitle()%></div> \
 </div> \
 <% if (existsValue('object')) { %> \
 Object value <%= getValue('object')%> \
 <% } %> \
 </div> \
 "),
 ...
})

10.FLYNKWIDG-E.1806 Description of widgets | 13

4.5.3 Preview template

You can implement a separate method to display the widget in preview mode in Touch constructor:

 WidgetView["your widget ID"] = WidgetView.extend({
 ...
 template: _.template(" \
 <div class=\"widget\"> \
 <% if (existsValue(\"object\") { %> \
 <%=getValue(\"object\")%> \
 <% } %> \
 </div> \
 "),
 preview: _.template(" \
 <div class=\"widget\"> \
 Object value \
 </div> \
 ")
 ...
})

If the preview method will not be implemented then during the initialization phase of widget the method template will
be called to do preview. Thus one single template can be implemented for widget, but keep in mind that in preview
mode it doesn’t contain objects and settings, thus all necessary checks should be made in the template.

The previous example but by using a single template for both widget display modes:

WidgetView["your widget ID"] = WidgetView.extend({
 ...
 template: _.template(" \
 <div class=\"widget\"> \
 <% if (isPreview) { %> \
 Object value \
 <% } else if (existsValue(\"object\")) { %> \
 <%=getValue(\"object\")%> \
 <% } %> \
 </div> \
 "),
 ...
})

14 | Description of widgets 10.FLYNKWIDG-E.1806

4.6 Data exchange among the model and view

Any property of the model is available in the view as the object instance is its attribute, but not vice versa. Besides
often a situation arises when the attribute change of the model should affect the view of the widget. In this case we
recommend to use Backbone events http://backbonejs.org/#Events .

The following examples shows how to display the changed object value on the page:

Widget["your widget ID"] = Widget.extend({
 ...
 changeValue : function(name, value) {
 //initiate event
 if (name=="status") return this.trigger("changedStatus");
 ...
 }
 ...
}

WidgetView["your widget ID"] = WidgetView.extend({
 ...
 init : function() {
 //subscribe to a specific event model
 this.listenTo(this.model, "changedStatus", this.changedStatus);
 },
 template: _.template(" \
 <div class=\"widget\"> \
 <%=getValue(\"status\")%> \
 </div> \
 "),
 changedStatus : function() {
 //change the value in HTML code
 $(".widget", this.el).text(this.model.getValue("status"))
 },
 ...
})

http://backbonejs.org/#Events

Feller AG | Postfach | CH-8810 Horgen
Telefon +41 44 728 72 72 | Telefax +41 44 728 72 99

Feller SA | Caudray 6 | CH-1020 Renens
Téléphone +41 21 653 24 45 | Telefax +41 21 653 24 51

Service Line | Telefon +41 44 728 74 74 | info@feller.ch | www.feller.ch

	1 Widget ID
	2 Widget file structure
	3 Available libraries and frameworks
	4 File script.js
	4.1 Widget configuration
	4.2 Auxiliary methods of class Widget (base model)
	4.2.1 Working with fellerLYnk objects (group addresses):
	4.2.2 Other methods and properties
	4.2.3 Call of methods of class Widget.

	4.3 Helper methods of class WidgetView (basic views)
	4.4 Trigger methods
	4.5 Widget templates
	4.5.1 Recommended widget structure
	4.5.2 Usage of methods and properties of model in templates
	4.5.3 Preview template

	4.6 Data exchange among the model and view

